present study we have knocked out HK2 using CRISPR in patient-derived cultures (n=3) and the established cell line U251MG, to determine changes in the rate of cell proliferation and drug sensitivity. Additionally down-stream factors, such as growth factors, were investigated via RT-PCR, arrays across 84 key genes involved in the regulation and enzymatic pathways of glucose metabolism. A substantial growth rate reduction between 38 to 44% (p<0.007) was demonstrated in CRISPR-modified cultures after 7 days compared to non-CRISPR cultures. Sensitivity of arrays was also signific-antly (p<0.0001) increased in response to HK2 knockout, where average ID50 values were 60% lower in cultures. Additionally CRISPR modified cultures yielded greater synergistic (Cl1) and additive effects (Cl1), with metformin and temozolomide combination treatment. Array data revealed an extensive change in downstream gene expression in CRISPR-modified cultures, between 25 to 48 genes were downregulated compared to the cor-responding non-CRISPR cultures. Furthermore CRISPR-modified cultures demonstrated a similar reduction in downstream expression when compared to the interplay biopsy, conversely a greater number of genes had unchanged expression levels compared to normal brain tissue. This study demonstrates the predominant role of HK2 within the glycolytic pathway, with over-expression potentially key in driving the genetic alterations downstream. HK2 knockout revealed considerable ubiquitous reductions in downstream gene expression compared to GBM biopsy tissue and non-CRISPR cultures. Addi-tionally an increase in drug sensitivity was depicted with the loss of HK2 signifying the potential of HK2 inhibition as a novel therapy in a significant subset of GBM.

PATH-34. VENTRICULAR-SUBVENTRICULAR ZONE CONTACT BY GLOBLASTOMA IS NOT ASSOCIATED WITH MOLECULAR SIGNATURES IN BULK TUMOR DATA

Ashitkumar Misra1, David Wooten1, Brett Mobley1, Vito Quaranta1 and Rebecca Ihrie2; 1Vanderbilt University Medical Center, Nashville, TN, USA; 2Vanderbilt University, Nashville, TN, USA

Whether patients with glioblastoma that contacts the stem cell niche of the ventricular-subventricular zone (V-SVZ) with GBM have identical or other known genetic alterations or molecular profiles is unclear. Using multivariate Cox analysis to adjust survival for widely-accepted predictors, hazard ratios (HRs) for overall (OS) and progression free (PFS) survival between V-SVZ+GBM and V-SVZ-GBM patients were calculated in 170 single-institution patients and 254 patients included in both The Cancer Genome (TCGA) and Imaging (TICIA) atlases. A multivariable analysis adjusted for age, Karnofsky performance score, IDH1 mutation, MGMT promoter methylation status, chemotherapy, radiotherapy, and extent of surgical resection revealed that V-SVZ con-tact was independently associated with decreased survival in both datasets (institutional patients: OS HR 1.55 [95% CI 1.03–2.33], P=0.037; PFS HR 1.57 [1.08–2.28], P=0.018; TCGA/TICGA patients: OS HR 1.69 [1.28–2.24], P<0.001; PFS HR 1.24 [0.91–1.7], P=0.18). Thorough TCGA molecular data analyses were conducted using differential molecular feature extraction, gene expression network construction, clustering methods, and dimen-sionality reduction. All analyses revealed that V-SVZ contact by GBM was independent of mutational, DNA methylation, gene expression, and protein expression changes in the bulk tumor. In GBM patients is independently stratified by V-SVZ contact, with V-SVZ+GBM patients displaying a poor prognosis, the V-SVZ+GBMs do not posses a dis-tinct molecular signature at the bulk sample level. Focused examination of the interplay between V-SVZ cytoarchitectural features, microenvironmental factors, and cancer cells within glioblastomas using subpopulation-or single-cell-based approaches is warranted.

PATH-35. FREQUENCY AND CHARACTERISTICS OF H3K27M-MUTATION IN ADULTS WITH RADIOGRAPHICALLY-DETERMINED MIDLINE GLIOMAS

Karina Schrcker1, Sarabhi Ranjar2, Nebjusa Skorupan3, Heather Ames4 and Matthias Holdhoff1; 1Neuro-Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, USA; 2Orlando Health UF Health Cancer Center, Orlando, FL, USA; 3Sinaí Hospital, Baltimore, MD, USA; 4University of Maryland School of Medicine, Baltimore, MD, USA; 5Yadkin Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institution, Baltimore, MD, USA

BACKGROUND: H3F3A mutations define the entity of Diffuse Midline Glioma, which was added to the WHO 2016 classification. There have been several reports describing the clinical, prognostic, and histopathological implications of this mutation. It is unclear, however, what proportion of adults with midline gliomas were investigated via qPCR and hence have an H3 K27M muta-tion. We set out to define this in a single-institution, retrospective cohort study. METHODS: From 850 consecutive gliomas in adults we identified 163 cases with radiographically-determined midline gliomas (brainstem, thalamus, basal ganglia, corpus callosum, spinal cord, or cerebellum). Clinical cases were reviewed in accordance with IRB guidelines. FFPE tissue was obtained from 120 cases and stained for H3 K27M. RESULTS: A H3 K27M mutation was identified in 18 of 120 cases (15%). As compared to non-H3 K27M mutated tumor, average age was 45.1 ± 12.8 versus 33.1 ± 16.7 years (p=0.003), 53% were female (p=0.04), 83% had a IDH1 mutation (p=0.79). All H3 K27M mutant tumors were WHO grade III or IV on histology, while non-mutant tumors encompassed all four grades (p=0.08). The most common locations to have H3 K27M-mutated tumors were midbrain (22/27; 81.5%), pontis (4/10; 40%), cerebellum (6/22; 27.3%), spinal cord (2/15; 15.4%), and thalamus (3/30; 10%). Median survival was 16 ± 6.0 months as compared to 8.1 ± 3.6 months in non-mutated midline high grade gliomas (p=0.15). CONCLUSIONS: H3K27M mutated tumors are common in gliomas located along the midline and this molecular subtype should be considered on all biopsies of all ages and grades with midline tumors, regardless of tumor location or contrast enhancement. Survival was not significantly different from non-H3 K27M mutated tumors, though a larger dataset will be necessary for confirmation.

PATH-36. IDH1 AND TERT PROMOTOR MUTATIONS IN NON-DIAGNOSTIC BIOPSIES FROM GLIOMA PATIENTS

Marc Bartinstituit1, Thibaud Picarte2, Delphine Poncet2, Tangy Fenouill3, Jacques Guyotat4, Emmanuel Jouanno1, Bastien Joubert5, Alexandre Vasiliev6, Jérôme Honnorat7, David Meyronet8 and François Ducray8; 1Hôpitaux Civils de Lyon, Groupe Hospitalier Est, Service Danatomopathologie, Lyon, Cedex, France, 2Hôpitaux Civils de Lyon, Groupe Hospitalier Est, Service Pathologie, Lyon, Cedex, France, 3Hôpitaux Civils de Lyon, Groupe Hospitalier Est, Service Neuro-Oncologie, Lyon, Cedex, France, 4Hôpitaux Civils de Lyon, Groupe Hospitalier Est, Service Neuro-Oncologie, Lyon, Cedex, France, 5Hôpitaux Civils de Lyon, Groupe Hospitalier Est, Service Neuro-Oncologie, Lyon, Cedex, France, 6Hôpitaux Civils de Lyon, Groupe Hospitalier Est, Service Neuro-Oncologie, Lyon, Cedex, France, 7Hôpitaux Civils de Lyon, Groupe Hospitalier Est, Service Neuro-Oncologie, Lyon, Cedex, France, 8Hôpitaux Civils de Lyon, Groupe Hospitalier Est, Service Neuro-Oncologie, Lyon, Cedex, France

BACKGROUND: Non-diagnostic biopsies are a recurrent issue in patients with a suspected brain tumor. Herein, in order to explore the utility of molecular testing and to establish whether IDH1 and TERT promoter (pTERT) mutations can be detected in non-diagnostic biopsies from glioma patients. METHODS: Using Snapshot PCR, we retrospectively assessed IDH1 and pTERT mutation status in 28 adult glioma patients supported by a first non-diagnostic biopsy. A pTERT mutation had led to perform a second bi-opsy. RESULTS: Median age at diagnosis was 65 years and median delay between the first and second biopsy 21 days. The first biopsy consisted of not characteristic infiltrated glial cells (n=19), hemorrhage (n=4), necrosis (n=2) or normal tissue (n=3). The second biopsy demonstrated an IDH1/mutant glioblastoma (n=22), an IDH1-mutant oligodendroglioma (n=1) and an IDH-mutant astrocytoma (n=1). A pTERT mutation was present in 21 cases. Retrospectively, the same IDH1 and pTERT mutations were identified in the non-diagnostic biopsies of the 17 patients with an IDH-mutant glioma tested by pTERT, whereas only one of the 11 patients with a pTERT-mutant glioma (57%). Overall an IDH1 and/or a pTERT mutation could be detected in a high percentage of non-diagnostic biopsies from glioma patients supporting a role for molecular testing in the interpretation of non-diagnostic biopsies from patients with a suspected brain tumor.

PATH-37. LIQUID BIOPSY FOR IDENTIFICATION OF NEWLY DIAGNOSED GLIOMA

Jan Lee1, Lisa Scarpace2, Kevin Nelson1, Darshkana Patil1, Vineet Datta1, Dadasheab Akolkar1, Sachin Aparva1, Pooja Fulmali1, Sneha Puranik1, James Snyder1, Houtan Nosrueh1, Pradeep Devhare3, Ana deCarvalho1, Rajan Darat4, Tobias Walbert1 and Steven Kallangus1; 1Henry Ford Health System, Detroit, MI, USA, 2Department of Neurosurgeons, Henry Ford Health System, Detroit, MI, USA, 3Datar Genetics, Nashik, Maharashtra, India, 4Henry Ford Hospital, Detroit, MI, USA

INTRODUCTION: In patients with newly diagnosed intracerebral lesions based on MRI, gliomas are often suspected, but MRI is rarely de-nitive thus necessitating biopsy. For non-enhancing lesions involving elo-quent or deep-seated structures, diagnosis can be especially challenging as biopsy may be relatively risky or undesirable to the patient. In this study, analysis of plasma isolated cell-free DNA and exosome mRNA and miRNA from newly diagnosed glioma patients and from cancer-free volunteers was used to predict disease. METHODS: Blood was drawn from 40 patients (28 high grade glioma (HGG), 12 low grade (LGG)) and 10 healthy volunteers without documented history of cancer. High quality DNA and RNA was isolated and sequenced using Next Generation Sequencing and Digital Droplet PCR was used for detection and verification of trace molecular artefacts. Multianalyte processing yielded data that was harmonized and interpreted through an Artificial Intelligence
PATH-38. CORRELATION OF ALTERATION OF HLA-F EXPRESSION AND CLINICAL CHARACTERIZATION IN 593 BRAIN GLIOMA SAMPLES
Gan You1 and Tingyu Liang2; 1Beijing TianTan Hospital, Beijing, China, 2Beijing Ditan Hospital, Beijing, China

BACKGROUND: Human gliomas are highly fatal tumor with a significant feature of immune suppression. The immune system in glioma is gradientally weakened, and immunotherapy is expected as a novel treatment of glioma patients. With a deep understanding of the immune microenvironment of glioma, immunotherapy of gliomas has been increased exponentially in recent years. Searching for key regulators of immune response in gliomas, we initially focused on human leukocyte antigen (HLA) system, responsible for regulating the immune system, and discovered the relationship between HLA-F expression and clinical prognosis in gliomas. METHODS: A total of 593 gliomas patients are concluded in our research, 325 patients from Chinese Glioma Genome Atlas (CGGA) and 268 patients from GSE 16011 set. Kaplan-Meier (KM) analysis was performed to explore the prognostic value of HLA-F expression analysis was used to find the distribution difference in various groups. R language package was used for other statistical computations and figures drawing. RESULTS: HLA-F was significantly negatively correlated with overall survival (OS) in all grade gliomas and glioblastoma (GBM). Moreover, HLA-F was enriched in GBM and IDH1 wild-type group, and HLA-F was a negative survival marker. Pearson correlation test showed that HLA-F was correlated with other HLA-I molecules. CONCLUSION: HLA-F expression was positively with malignant phenotype and negatively with OS indicating that HLA-F could predict the immune state in glioma, and might be a clinical target of glioma immunotherapy. Key Words: HLA-F; glioma; immunotherapy; OS

PATH-39. ASTROCYTOMA OF THE SPINAL CORD: A GENETIC CHARACTERIZATION AFTER MICROSURGICAL RESECTION
Annamaria Biczk1, Mario Doroskar2, Rupert Egersperger3, Jörg-Christian Tonn1 and Stefan Zausinger1; 1Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany, 2Center for Neurooncology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany

INTRODUCTION: The revised version of the WHO classification system (2016) introduced molecular markers being of prognostic importance in gliomas. Primary spinal cord astrocytomas are very rare. Aggressive surgical resection is believed to be critical for extending progression free and overall survival. However, the prognostic significance of molecular variables remains unclear for these tumors. Herein we investigate molecular chances of spinal gliomas, which may allow more accurate risk stratification. METHODS: We performed genome sequencing in 10 spinal astrocytomas including glioblastomas (WHO grade IV), anaplastic astrocytomas (WHO grade III), diffuse astrocytomas (WHO grade II) and pilocytic astrocytoma (WHO grade I). RESULTS: We identified 5 spinal glioblastomas, 1 anaplastic astrocytoma, 2 diffuse astrocytomas and 2 pilocytic astrocytomas. Median overall survival (OS) was 6 months (range: 2-14 months) for grade IV tumors, 33 months (range: 30-136 months) for grade II and III tumors and 95 months (range: 49-141 months) for grade I tumors, respectively. One grade II and one grade I tumor were carrying the IDH1 and IDH2 mutations, all other tumors were IDH wild type (OS: 93–142 months). Gross total resection was not achieved in any patient. 9 patients received adjuvant radiotherapy. The most current findings in spinal GBM were H3F3A mutations (5/5) and ATRX mutation (5/5). H3F3A mutation was observed in 1 WHO grade II tumor (OS: 93 months) and in 3 WHO grade III tumors (OS: 93-141 months). WHO grade II tumors that were associated with shortened OS in univariate analysis. WHO grade II tumors were found to have mutations in CCND2, DDX3X, EGFR, HIST1H3B, KIT, MYC, MET, DMD, PTCH2, SMARCA4 and TSC2. CONCLUSION: Genomic analysis of spinal astrocytomas provides an opportunity to identify potentially clinically relevant information. These data indicate an association between H3F3A mutation and a shortened overall survival in spinal astrocytomas.

PATH-40. TARGETED NEXT GENERATION SEQUENCING (NGS) OF YOUNG ADULTS WITH ISOCITRATE-DEHYDROGENASE WILD-TYPE GliOBLASTOMA (IDH-WT GBM) REVEALS NEGATIVE PROGNOSTIC IMPACT OF SPATIAL GROWTH FACTOR RECEPTOR AMPLIFICATION (EGFRAM)
Daniel Hoffmann1, Kalil Abdullah1, Zev Binder2, Donald O’Rourke2, Arati Desai2, Jennifer Morrissette3, Steven Brem4 and Stephen Bagley1; 1Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA, 2Department of Neurosurgery, 2Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA, 3Center for Personalized Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

BACKGROUND: Young adults with IDH-WT GBM represent a rare, understudied population compared to pediatric, IDH-mutant, or typical (elderly) GBM. We aimed to explore clinically detectable genomic alterations in this population and their prognostic impact. METHODS: We identified patients ages 21-45 with newly diagnosed, previously untreated IDH-WT GBM whose tumors underwent NGS at our institution. Patients with hereditary conditions were excluded. The goal was to improve understanding of the spatial genetic variants by targeted exome sequencing of 47 (2014-2016) or 153 (2016-present) genes. Clinical characteristics and overall survival (OS) were collected. These data were also collected from a contemporaneous cohort of older (45-70 years) patients with newly diagnosed, IDH-WT GBM. RESULTS: 28 young and 30 old patients were included. In young patients, 12 (43%) had an EGFR alteration (2 [7%] EGFR mutation, 7 [25%] EGFR amplification (EGFRam), and 3 [11%] both EGFRam and EGFRvIII). Other mutations detected in young patients were TP53 in 7 (25%), BRAF (V600E) in 3 (11%), RB1 in 3 (11%), PTEN in 2 (7%), SETD2 in 2 (7%), and DNMT3A in 2 (7%). Differences detected in older vs. younger patients were more frequent PTEN mutations (27% vs. 7%, p=0.049) and MGMT methylation (50% vs. 25%, p =0.06). In young patients, median OS was 19.5 months (95% CI 15.9-24.4), and EGFRam was associated with inferior median OS (16.3 vs. 23.5 months, p=0.047). There was no difference in OS in EGFRam in older patients. CONCLUSIONS: EGFRam was associated with shorter OS in our cohort of young adults with IDH-WT GBM, whereas no association was detected in older patients. This suggests a potential role for targeting EGFR specifically in this population. In addition, consistent with prior studies, we found that MGMT methylation is less common in young patients with IDH-WT GBM, highlighting the need for alternatives to temozolomide.

PATH-41. PLASMA CELL-FREE DNA (cfDNA) CONCENTRATION IS INDEPENDENTLY ASSOCIATED WITH RADIOTHERAPIC TUMOR BURDEN IN NEWLY DIAGNOSED GliOBLASTOMA (GBM) PRIOR TO INITIAL SURGICAL RESECTION
Stephen Bagley1, Jacob Till2, Jilmie Mays1, Seyed Nabavizadeh3, Stephanie Yee1, Scott Levy2, Arati Desai1 and Eric Carpenter2; 1Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

BACKGROUND: Distinguishing between radiographic pseudoprogression and true tumor progression is challenging in patients with GBM. Recent data suggests that plasma cfDNA concentration may serve as a viable surrogate for tumor burden in other malignancies. We performed a pilot study to determine the feasibility of detecting cfDNA in patients with newly diagnosed GBM and explored its correlation with radiographic tumor burden and other relevant clinical variables. METHODS: We collected blood in Streck cfDNA tubes from patients with radiographically suspected high-grade glioma prior to planned initial surgical resection. Plasma cfDNA was extracted using a 3-step centrifugation protocol. cfDNA was measured by qPCR on the QuantStudio 12K Flex (Life Technologies, USA). Concentration of cfDNA was compared to clinicopathological data using Spearman’s correlation. RESULTS: 134 GBM patients are concluded in our research, 325 patients from Chinese Glioma Genome Atlas (CGGA) and 268 patients from GSE 16011 set. Kaplan-Meier analysis had concordance at 74% (26/35) and 59% (12/16), respectively. CONCLUSIONS: We found plasma cfDNA concentration may serve as a viable surrogate for tumor burden in high-grade glioma prior to planned initial surgical resection. Plasma cfDNA concentration is independently associated with radiographic tumor burden in newly diagnosed GBM.