IDH-mutant lower-grade astrocytomas have only rarely been investigated. In this study, we recruited 161 IDH-mutant lower-grade astrocytomas, and examined PDGFRα amplification, CDKN2A deletion, and CDK4 amplification by LSIISH method, TERT promoter mutation by Sanger sequencing, and ATRX loss and p53 expression by immunohistochemistry. We identified PDGFRα amplification, CDKN2A deletion, and CDK4 amplification in 18.6%, 14.9%, and 18.0% of our cohort respectively, and these alterations occurred in a mutually exclusive fashion. PDGFRα amplification was associated with shorter PFS (p=0.0001) and OS (p<0.0001). In tumors without PDGFRα amplification, CDKN2A deletion was associated with a shorter PFS (p=0.0332). Tumors were then divided into three risk groups based on the presence or absence of one or more alterations: PDGFRα amplification, intermediate-risk (CDKN2A deletion or CD4K amplification) and low-risk (neither CDKN2A deletion, CD4K amplification nor PDGFRα amplification). These three risk groups were significantly different in overall survival with mean survivals of 40.2, 62.9, and 71.8 months. The high-risk group also demonstrated a shorter PFS compared to intermediate- (p=0.036) and low-risk (p<0.0001) groups. Our data illustrate that IDH-mutant lower-grade astrocytomas is not a homogeneous group and should be molecularly stratified for risk.

PATH-43. DIAGNOSIS OF GLIOMAS USING CIRCULATING GLIAL CELLS
Takahisa Patil1, Dadasahhe Akolkar2, Stefan Schuster3, HB Govardhan4, Vineet Datta5, Jatinder Bhatia5, Revati Patil6, Sneha Panduri6, Sachin Awale7, Ayaj Shrivastava8, Pooja Fulmali9, and Rajan Datar1
1Datar Cancer Genetics Limited, Nasik, Maharashtra, India, 2Datar Cancer Genetics Limited, Nasik, India, 3Datar Cancer Genetics Europe GmbH, Bayreuth, Germany, 4Kiwai Memorial Institute of Oncology, Bellaguru, Karnataka, India

Invasive procedures for diagnosis of CNS malignancies carry inherent risks of high morbidity and mortality. Although circulating biomarkers such as cell free DNA (cfDNA) and microvesicle (MV) borne nucleic acids have been proposed as potential diagnostic aids, their stand-alone utility has inherent limitations. However, Circulating Glial Cells (CGCs) combined with cfDNA could offer a viable alternative to invasive biopsies for diagnosis of CNS malignancies; yet the technological challenge in the detection of CGCs in glioma patients presents a formidable challenge. In this study, we evaluated the feasibility of harvesting CGCs from CSF. From a cohort of 23 suspected cases of CNS malignancies, we used 15ml of peripheral blood and used the CellWizard™ process and related protocol for isolation of CGCs. CellWizard™ is an epigenetically active media with paradoxical chemo-resistance that selectively induces lethality in normal cells which have a functionally responsive cell death (apoptosis) mechanism, while simultaneously conferring survival privilege on apoptosis resistant cells typically released from a malignant tumor. This paradoxical cytotoxicity of the medium leads to selective elimination of most leukocytes thus facilitating a label free negative enrichment of CGCs, which can be harvested and further characterized. Patients included 11 Glioblastoma, 3 Anaplastic astrocytoma, 2 Medulloblastoma, 3 Oligodendroglioma, 1 Gliosarcoma and 1 meningioma patient. Characterization of CGCs was performed using CD250 and CD345 markers. CGCs were detected in 12 (33 %) patients and could be stained positively for both GFAP and S100 and negatively for CD45. Detection of viable CGCs in cases of CNS malignancies can be used for characterization of markers related to the diagnosis.

PATH-44. MULTIPLE BIOMARKER ALGORITHM BASED ON CXCL13, IL-10, IL-2 RECEPTOR, AND β2-MICROGLOBULIN IN CEREBROSPINAL FLUID TO DIAGNOSE CENTRAL NERVOUS SYSTEM LYMPHOMA
Takashi Nagayama1, Kazuhiro Tanaka1, Masahiro Matsumiya2, Satoshi Nakamizo1, Hironobu Tanaka2, Masamitsu Nishihara3, Takane Hirose4, Yuichi Fujita5, and Eri Kohamura6
1Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan, 2Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan, 3Department of Neurosurgery, Nishi-Kobe Medical Center, Kobe, Japan, 4Department of Pathology for Regional Communication, Kobe University Hospital, Kobe, Japan, 5Kobe, Japan

BACKGROUND: Brain biopsy is the gold standard for the diagnosis of primary central nervous system lymphoma (PCNSL). However, the biopsy procedure has a risk of complications, such as hemorrhage and seizure. We have reported that cerebrospinal fluid (CSF) interleukin-10 (IL-10), soluble interleukin-2 receptor (sIL-2R), and β2-microglobulin (β2-MG) are potential diagnostic biomarkers for PCNSL. Recently, the C-X-C motif chemokine ligand 13 (CXCL13) has been reported to be another useful biomarker for the PCNSL. The aim of this study was to validate the diagnostic performance of the CSF CXCL13 and diagnostic algorithm based on the combination of these biomarkers. METHODS: We retrospectively examined the CSF CXCL13 concentration, as well as IL-10, sIL-2R, and β2-MG, in a case-control study (n=230). We used logistic regression analyses to create diagnostic algorithms based on these CSF biomarkers. To examine the utility of the two algorithms in differentiating PCNSL, we performed a receiver operating characteristics (ROC) analysis to evaluate the accuracy of this algorithm. RESULTS: In case-control study, we have demonstrated that CSF CXCL13 levels were significantly higher in the patients with PCNSL (area under the curve (AUC)=0.981). A total of 84 patients were included in the prospective study. We applied the variate diagnostic algorithm using CSF levels of CXCL13, IL-10, sIL-2R, and β2-MG demonstrated excellent diagnostic performance: positive predictive value was 89% and negative predictive value was 100%. Four of the combined biomarker combinations of CXCL13 + IL-10 + β2-MG + sIL-2R had highest AUC (AUC≥0.998). The misdiagnosis cases of the algorithm were only 3 cases; CNS Sjogren’s syndrome, histiocytic sarcoma, and glioblastoma. In addition, CSF CXCL13 levels were prognostic biomarkers in PCNSL patients. CONCLUSIONS: Our study suggests that the algorithm based on 4 CSF biomarkers had excellent diagnostic performance in CNS lymphoma. However, this algorithm should be further validated in prospective cohort studies with larger numbers of patients.

PATH-45. DIFFERENT TYPES OF HYPERMUTATOR PHENOTYPE OF GLOBIOLASTOMA ACCORDING TO MUTATION PATTERNS OF MISMATCH REPAIR GENES
Kumon Saito1, Sak Sisarat1, Eriko Nozaki2, Keiichi Takanori3, Satoshi Takashi4, Yuki Yamagishi5, Yosshika Shokawa1, and Motoo Nagane6
1Kyorin University Faculty of Medicine, Tokyo, Japan, 2Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo, Japan

BACKGROUND: Although precision medicine has been widely applied to routine care, only few molecular targeted drugs have been developed against glioma. Immunotherapy targeting PD-1/PD-L1 is the most promising approach to improve outcome of malignant glioma especially with the hypermutator phenotype. Mismatch repair deficiency could induce hypermutation during temozolomide (TMZ) treatment, but the mechanism of mutation acquisition is not well understood. METHODS: We present the results of target sequencing of 57 longitudinal specimens from 27 individuals with glioblastoma (GBM). We used Ion AmpliSeq Cancer Hotspot Panel v2 (CHP) and/or Ion AmpliSeq Comprehensive Cancer Panel (CCP) for targeted next generation sequencing. RESULTS: Acquired mutations with G:C >A:T transition at non-CpG sites were found in 70% of recurrent TMZ methylated samples, whereas only 8% in MGMT unmethylated cases (p<0.001). Two cases of hypermutator phenotype were identified in MGMT methylated, IDH wild type, recurrent GBMs after TMZ chemotherapy. One case gained mutations in mismatch repair genes of MLH1, MSH2, MSH6, and PMS1. Most of the acquired mutations were G:C >A:T mutations typical to TMZ-induced hypermutation. The recurrent tumor was highly aggressive with overall survival after recurrence of 3.7 months. The other case gained mutations in mismatch repair genes of MLH1, MSH2, and PMS1, and the main acquired mutations were insertion mutations. The prognosis after recurrence was much longer. CONCLUSIONS: We identified two types of hypermutator phenotype according to mutation pattern of mismatch repair genes. It has been suggested that MLH2-MSH6 complex deficient tumor cannot repair TMZ-induced mismatch mutation, thereby causing hypermutation. Conversely, MLH1-PMS1 complex deficient tumor with intact MSH2-MSH6 complex cannot repair mismatch mutation but is susceptible to insertion mutation. Taken together, MSH2 mutation plays a key role in the potential hypermutation, while MLH1 and PMS1 mutations might cause insertion-based hypermutation. Larger and prospective studies are warranted to clarify the mechanism, outcome, and effectiveness of checkpoint inhibitors.

PATH-46. DETECTING MISDIAGNOSED ATYPICAL TERATOID/ RHABDOID TUMOR (ATRT) BY DNA METHYLATION-BASED TUMOR CLASSIFICATION
Yueh-Jung Meng-Chang Hsu1, Lauren Holinka1, Michael Peracchio2, Kevin Kelly1, Andrew Hesse, Ching Lau, and Honey Reddi
The Jackson Laboratory for Genomic Medicine, Farmington, USA

Brain tumor diagnostics is achieved by combining morphology assessment and biomarker identification. However, the inter-observer variability of the histopathological diagnosis and lack of distinctive biomarkers makes these diagnoses particularly challenging. Recently, the potential for methylation-based characterization has been developed for brain tumors. To provide accurate and efficient brain tumor diagnostics, The Jackson Laboratory developed a DNA methylation array (Illumina Infinium HD Methyl reusable BeadChip) and/or Ion AmpliSeq Comprehensive Cancer Panel (CCP) for target sequencing of 57 longitudinal specimens from 27 individuals with glioblastoma (GBM). We used Ion AmpliSeq Cancer Hotspot Panel v2 (CHP) and/or Ion AmpliSeq Comprehensive Cancer Panel (CCP) for target sequencing. RESULTS: Acquired mutations with G:C >A:T transition at non-CpG sites were found in 70% of recurrent TMZ methylated samples, whereas only 8% in MGMT unmethylated cases (p<0.001). Two cases of hypermutator phenotype were identified in MGMT methylated, IDH wild type, recurrent GBMs after TMZ chemotherapy. One case gained mutations in mismatch repair genes of MLH1, MSH2, MSH6, and PMS1. Most of the acquired mutations were G:C >A:T mutations typical to TMZ-induced hypermutation. The recurrent tumor was highly aggressive with overall survival after recurrence of 3.7 months. The other case gained mutations in mismatch repair genes of MLH1, MSH2, and PMS1, and the main acquired mutations were insertion mutations. The prognosis after recurrence was much longer. CONCLUSIONS: We identified two types of hypermutator phenotype according to mutation pattern of mismatch repair genes. It has been suggested that MLH2-MSH6 complex deficient tumor cannot repair TMZ-induced mismatch mutation, thereby causing hypermutation. Conversely, MLH1-PMS1 complex deficient tumor with intact MSH2-MSH6 complex cannot repair mismatch mutation but is susceptible to insertion mutation. Taken together, MSH2 mutation plays a key role in the potential hypermutation, while MLH1 and PMS1 mutations might cause insertion-based hypermutation. Larger and prospective studies are warranted to clarify the mechanism, outcome, and effectiveness of checkpoint inhibitors.